Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 37(10): 1531-1540, Oct. 2004. tab, graf
Article in English | LILACS | ID: lil-383035

ABSTRACT

The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5 percent Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 ± 0.2; Pz 2 = 5.2 ± 0.4; Pz 3 = 5.9 ± 0.4 s; mean ± SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 µmol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.


Subject(s)
Animals , Male , Mice , Analgesics , Pain Measurement , Pyrazoles , Analysis of Variance , Dose-Response Relationship, Drug , Reaction Time , Receptors, Opioid , Restraint, Physical
2.
Braz. j. med. biol. res ; 28(6): 643-9, Jun. 1995. tab
Article in English | LILACS | ID: lil-154932

ABSTRACT

ATP diphosphohydrolase (apyrase)(EC3.6.1.5) activity was measured in synaptosomes from cerebral cortex of Wistar rats of both sexes subjected to experimental phenylketonuria, i.e., chemical hyperphenylaninemia induced by subcutaneous administration of 5.2 µmol phenylalanine/g body weight (twice a day) plus 0.9 µmol p-chlorophenylalanine/g body weight (once a day). ATP diphosphohydrolase specific activity (nmol Pi min-1 mg protein-1) of synaptosomes was significantly decreased compared to controls for both ATp (from 147.6 to 129.9) and ADP (from 70.2 to 63.1) hydrolysis one hour after single administration of the drugs to 35-day old rats. Chronic treatment was performed from the 6th to the 28th postpartum day. The enzyme specific activity of synaptosomes was measured one week after the last administration of the drugs and was significantly reduced compared to controls for both ATP (from 164.1 to 150.2) and ADP (from 76.3 to 62.1) hydrolysis. The in vitro effects of the drugs on the synaptosome enzyme specific activity were also investigated. Phenylalnine alone or associated with p-chlorophenylalanine significantly reduced enzyme specific activity for both ATP (from 150.2 to 136.0) and ADP (from 70.5 to 59.3) nucleotides as substrates. Since ATP diphosphohrolase seems to play an important role in neurotransmission, these findings may be related to the neurological dysfunction characteristic of human phenylketonuria


Subject(s)
Animals , Female , Male , Rats , Apyrase/metabolism , Cerebral Cortex/enzymology , Phenylalanine/administration & dosage , Phenylketonurias/chemically induced , Synaptosomes/enzymology , Phenylalanine/analogs & derivatives , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL